4.7 Article

Structure and shape variations in intermediate-size copper clusters

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 124, 期 2, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2150439

关键词

-

向作者/读者索取更多资源

Using extensive, unbiased searches based on density-functional theory, we explore the structural evolution of Cu-n clusters over the size range n=8-20. For n=8-16, the optimal structures are plateletlike, consisting of two layers, with the atoms in each layer forming a trigonal bonding network similar to that found in smaller, planar clusters (n <= 6). For n=17 and beyond, there is a transition to compact structures containing an icosahedral 13-atom core. The calculated ground-state structures are significantly different from those predicted earlier in studies based on empirical and semiempirical potentials. The evolution of the structure and shape of the preferred configuration of Cu-n, n <= 20, is shown to be nearly identical to that found for Na clusters, indicating a shell-model-type behavior in this size range.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据