4.7 Article

Accurate magnetic exchange couplings in transition-metal complexes from constrained density-functional theory

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 124, 期 2, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2145878

关键词

-

向作者/读者索取更多资源

We demonstrate an accurate method for extracting Heisenberg exchange-coupling constants (J) from density-functional theory (DFT) calculations. We note that the true uncoupled low-spin state of a given molecule should be identified with the ground state of the system subject to a constraint on the spin density of the atoms. Using an efficient optimization strategy for constrained DFT we obtain these states directly, leading to a simple, physically motivated formula for J. Our method only depends on state energies and their associated electron densities and assigns no unphysical meaning to the Kohn-Sham determinant or individual orbitals. We study several bimetallic transition-metal complexes and find that the constrained DFT approach is competitive with, if not better than, the best broken symmetry DFT results. The success of constrained DFT in these cases appears to result from a balanced elimination of self-interaction error and static correlation from the simulation. (c) 2006 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据