4.6 Article

Analysis of particle transport in a magnetophoretic microsystem

期刊

JOURNAL OF APPLIED PHYSICS
卷 99, 期 2, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2164531

关键词

-

向作者/读者索取更多资源

An analytical analysis is presented of the transport and capture of magnetic micro/nanoparticles in a magnetophoretic microsystem that consists of an array of integrated soft-magnetic elements embedded beneath a microfluidic channel. The elements, which are polarized by a bias field, produce a nonuniform field distribution that gives rise to a force on magnetic particles within the microchannel. The equations governing particle motion are derived using analytical expressions for the dominant magnetic and fluidic forces. The magnetic force is obtained using an analytical expression for the field distribution in the microchannel combined with a linear magnetization model for the magnetic response of the particles. The theory takes into account particle size and material properties, the bias field, the dimensions of the microchannel, the fluid properties, and the flow velocity. The equations of motion are solved to study particle transport and capture. The analysis indicates that the particles exhibit an oscillatory motion as they traverse the microsystem, and that a high capture efficiency can be obtained in practice. (c) 2006 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据