4.8 Article

Herbicide-binding sites revealed in the structure of plant acetohydroxyacid synthase

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0508701103

关键词

inhibition; sulfonylurea; x-ray crystallography; imidazolinone; thiamin diphosphate

资金

  1. NCRR NIH HHS [RR07707, P41 RR007707] Funding Source: Medline

向作者/读者索取更多资源

The sulfonylureas and imidazolinones are potent commercial herbicide families. They are among the most popular choices for farmers worldwide, because they are nontoxic to animals and highly selective. These herbicides inhibit branched-chain amino acid biosynthesis in plants by targeting acetohydroxyacid synthase (AHAS, EC 2.2.1.6). This report describes the 3D structure of Arabidopsis thaliana AHAS in complex with five sulfonylureas (to 2.5 angstrom resolution) and with the imidazolinone, imazaquin (IQ; 2.8 angstrom). Neither class of molecule has a structure that mimics the substrates for the enzyme, but both inhibit by blocking a channel through which access to the active site is gained. The sulfonylureas approach within 5 angstrom of the catalytic center, which is the C2 atom of the cofactor thiamin diphosphate, whereas IQ is at least 7 angstrom from this atom. Ten of the amino acid residues that bind the sulfonylureas also bind IQ. Six additional residues interact only with the sulfonylureas, whereas there are two residues that bind IQ but not the sulfonylureas. Thus, the two classes of inhibitor occupy partially overlapping sites but adopt different modes of binding. The increasing emergence of resistant weeds due to the appearance of mutations that interfere with the inhibition of AHAS is now a worldwide problem. The structures described here provide a rational molecular basis for understanding these mutations, thus allowing more sophisticated AHAS inhibitors to be developed. There is no previously described structure for any plant protein in complex with a commercial herbicide.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据