4.7 Article

Treadmill exercise produces larger perfusion defects than dipyridamole stress N-13 ammonia positron emission tomography

期刊

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.jacc.2005.09.027

关键词

-

向作者/读者索取更多资源

OBJECTIVES The aim of this study was to compare treadmill exercise (TEX) and dipyridamole stress on the uptake and retention of N-13 ammonia. BACKGROUND Size and severity of stress-induced myocardial perfusion defects are clinically important. Because ammonia uptake and retention seems to be related to perfusion, viability, and metabolism, exercise stress might induce larger perfusion defects than dipyridamole stress. METHODS Twenty-six patients underwent TEX and dipyridamole stress N-13 ammonia positron emission tomography (PET). Images were assessed with a 17-segment model and a five-point score. Summed stress score (SSS), summed rest score (SRS), and summed difference score (SDS) were calculated. Left ventricular (LV) defect sizes were measured quantitatively with a 70% threshold for abnormal perfusion. RESULTS Compared with dipyridamole stress, TEX yielded larger SSS (9.1 +/- 5.7 vs. 6.9 +/- 5.9; p < 0.01), SIDS (5.8 +/- 4.7 vs. 3.7 +/- 4.6; p < 0.02), and percentage of LV stress defect (19.3 +/- 11.5% vs. 13.8 +/- 13.6%; p < 0.02). CONCLUSIONS In patients achieving adequate exercise, TEX N-13 ammonia PET myocardial perfusion imaging (MPI) yields larger stress perfusion defects than dipyridamole stress and might reflect the true myocardial ischemic burden. Treadmill exercise might be the preferred method of stress for routine N-13 ammonia PET MPI.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据