4.8 Article

Structure-property correlation of CdSe clusters using experimental results and first-principles DFT calculations

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 128, 期 2, 页码 629-636

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja0565018

关键词

-

向作者/读者索取更多资源

Structures and properties of CdSe quantum dots (clusters) up to a diameter of similar to 2 nm were investigated by combining experimental absorption, photoluminescence (PL), and X-ray diffraction (XRD) spectroscopies as well as ab initio DFT calculations. These CdSe clusters were nucleated and grown from solutions containing respective cadmium and selenium precursors following the hot-injection technique that allows one to obtain size-controlled CdSe clusters having PL efficiency up to 0.5. The DFT calculations were performed at the B3LYP/LanI2dz level and followed by time-dependent TDDFT calculations to estimate n energy singlet transitions. On the basis of the results of these experimental and theoretical studies, an approach to determine whether the proposed cluster with a mean diameter of similar to 2 nm is more physically reasonable is discussed. It was shown that the minimum nucleus of a CdSe cluster consists of (CdSe)(3) with a six-membered ring and planar structure. No PL is observed for this structure. The formation of the next stable cluster depends on whether hexadecylamine (HDA) was used for the growth of the CdSe clusters. In the absence of HDA, the second cluster was found to be (CdSe)(6) characterized by a broad PL spectrum, while in the presence of HDA, it was found to be (CdSe)(n) (where n >= 14) with a sharp PL spectrum.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据