4.7 Article

Active carbon and oxygen shell burning hydrodynamics

期刊

ASTROPHYSICAL JOURNAL
卷 637, 期 1, 页码 L53-L56

出版社

UNIV CHICAGO PRESS
DOI: 10.1086/500544

关键词

hydrodynamics; stars : interiors; turbulence; waves

向作者/读者索取更多资源

We have simulated 2.5 x 10(3) s of the late evolution of a 23 M-circle dot star with full hydrodynamic behavior. We present the first simulations of a multiple-shell burning epoch, including the concurrent evolution and interaction of an oxygen- and a carbon-burning shell. In addition, we have evolved a three-dimensional model of the oxygen-burning shell to sufficiently long times (300 s) to begin to assess the adequacy of the two-dimensional approximation. We summarize striking new results: (1) strong interactions occur between active carbon- and oxygen-burning shells; (2) hydrodynamic wave motions in nonconvective regions, generated at the convective-radiative boundaries, are energetically important in both two and three dimensions, with important consequences for compositional mixing; and (3) a spectrum of mixed p- and g-modes are unambiguously identified with corresponding adiabatic waves in these computational domains. We find that two-dimensional convective motions are exaggerated relative to three-dimensional ones because of vortex instability in three dimensions. We discuss the implications for supernova progenitor evolution and symmetry breaking in core collapse.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据