4.4 Article

The distribution of fitness effects among beneficial mutations in Fisher's geometric model of adaptation

期刊

JOURNAL OF THEORETICAL BIOLOGY
卷 238, 期 2, 页码 279-285

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jtbi.2005.05.001

关键词

adaptation extreme value theory; geometric model; mutational landscape

向作者/读者索取更多资源

Recent models of adaptation at the DNA sequence level assume that the fitness effects of new mutations show certain statistical properties. In particular, these models assume that the distribution of fitness effects among new mutations is in the domain of attraction of the so-called Gumbel-type extreme value distribution. This assumption has not, however, been justified oil ally biological or theoretical grounds. In this note, I study random mutation in one of the simplest models of mutation and adaptation-Fisher's geometric model. I show that random mutation in this model yields a distribution of mutational effects that belongs to the Gumbel type. I also show that the distribution of fitness effects among rare beneficial mutations in Fisher's model is asymptotically exponential. I confirm these analytic findings with exact computer simulations. These results provide some support for the use of Gumbel-type extreme value theory in studies of adaptation and point to a surprising connection between recent phenotypic- and sequence-based models of adaptation: in both, the distribution of fitness effects among rare beneficial mutations is approximately exponential. (c) 2005 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据