4.7 Article

A generalized quantum chemical approach for elastic and inelastic electron transports in molecular electronics devices

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 124, 期 3, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2159490

关键词

-

向作者/读者索取更多资源

A generalized quantum chemical approach for electron transport in molecular devices is developed. It allows one to treat devices where the metal electrodes and the molecule are either chemically or physically bonded on equal footing. An extension to include the vibration motions of the molecule has also been implemented which has produced the inelastic electron-tunneling spectroscopy of molecular electronics devices with unprecedented accuracy. Important information about the structure of the molecule and of metal-molecule contacts that are not accessible in the experiment are revealed. The calculated current-voltage (I-V) characteristics of different molecular devices, including benzene-1,4-dithiolate, octanemonothiolate [H(CH2)(8)S], and octanedithiolate [S(CH2)(8)S] bonded to gold electrodes, are in very good agreement with experimental measurements. (c) 2006 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据