4.4 Review

Structure and dynamics of the HIV-1 Vpu transmembrane domain revealed by solid-state NMR with magic-angle spinning

期刊

BIOCHEMISTRY
卷 45, 期 3, 页码 918-933

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bi051766k

关键词

-

资金

  1. Intramural NIH HHS Funding Source: Medline

向作者/读者索取更多资源

We report solid-state nuclear magnetic resonance (NMR) measurements on the peptide Vpu(1-40), comprising residues 1-40 of the 81-residue type 1 integral membrane protein Vpu encoded by the HIV-1 genome. On the basis of a combination of C-13 and N-15 NMR chemical shifts under magic-angle spinning (MAS), effects of local mobility on NMR signal intensities, site-specific MAS NMR line widths, and NMR-detected hydrogen-deuterium exchange, we develop a model for the structure and dynamics of the Vpu(1-40) monomer in phospholipid bilayer membranes. Our data are largely consistent with earlier structural studies of Vpu peptides by Opella and co-workers, in which solution NMR and solid-state NMR without MAS were used, but our data provide new information about local variations in the degree of mobility and structural order. In addition, our data indicate that the transmembrane a-helix of Vpu(1-40) extends beyond the hydrophobic core of the bilayer. We find no evidence for heterogeneity in the conformation and intermolecular contacts of the transmembrane alpha-helix, with the exception of two distinct chemical shifts observed for the C alpha and C beta atoms of A18 that may reflect distinct modes of helix-helix interaction. These results have possible implications for the supramolecular structure of Vpu oligomers that form cation-selective ion channels.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据