4.8 Article

Structural studies of lithium intercalation in a nanocrystalline α-Fe2O3 compound

期刊

CHEMISTRY OF MATERIALS
卷 18, 期 2, 页码 423-434

出版社

AMER CHEMICAL SOC
DOI: 10.1021/cm052014f

关键词

-

向作者/读者索取更多资源

A nanocrystalline Fe2O3, synthesized via a low-temperature aqueous synthesis route, is reported as a cathode material for rechargeable lithium batteries. This compound possesses a structure similar to that of hematite or alpha-Fe2O3 with crystallites ca. 5 nm in size. The electrochemical properties of this compound are seen to be dramatically superior to those of microcrystalline alpha-Fe2O3, with specific capacities of 200-250 mA(.)h/g and energy densities of 425-500 mW(.)h/g at different current rates. The compound also shows excellent reversibility upon discharge/charge cycling, much improved over that reported for most microcrystalline iron oxides. Detailed structural analysis of the compound and its lithium intercalation process has been conducted via X-ray diffraction and X-ray absorption fine structure spectroscopy (XAFS), and unique features associated with the nanocrystalline compound have been observed. First, owing to the very small crystallite size and the associated structural disorder, deviations in the local structure of the nanocrystalline compound in comparison to microcrystalline alpha-Fe2O3 are seen. Second, the nanocrystalline compound is observed to yield much higher single-phase capacity than that of the microcrystalline alpha-Fe2O3. The nanocrystalline compound allows accommodation of up to 0.47 Li per Fe2O3 whereas the microcrystalline compound is known to yield single-phase capacity up to only 0.03 Li per Fe2O3. Finally, upon further discharge the nanocrystalline compound shows transformation to a substantially disordered structure that can be indexed to a cubic lattice. Isosbestic points in the XAFS data clearly show the occurrence of this phase transformation and emerge as a strong tool for determining phase transformations incipient at the local scale. This study reveals the surprising electrochemical performance of the nanocrystalline iron oxide and the underlying novel structural and mechanistic characteristics and highlights the striking contrast between nanocrystalline intercalation compounds and their microcrystalline counterparts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据