4.8 Article

Ab initio simulation of Si-doped hydroxyapatite

期刊

CHEMISTRY OF MATERIALS
卷 18, 期 2, 页码 413-422

出版社

AMER CHEMICAL SOC
DOI: 10.1021/cm051989x

关键词

-

向作者/读者索取更多资源

Si-doped hydroxyapatite is a bioceramic useful as a bone repair material retaining the hexagonal structure of hydroxyapatite up to about 2 wt % Si. Different mechanisms for charge compensation for the SiO44- ion substituting for the PO43- have been proposed. Also, variations are reported in the dependence of the lattice parameters on the Si doping. These may be a result of different charge compensation mechanisms which may in turn depend on the method of preparation of the material. Calculation using ab initio total energy methods have been performed to investigate different mechanisms for charge compensation in Si-doped hydroxyapatite. Mechanisms involving an OH vacancy, an oxygen vacancy, and an additional hydrogen are studied. These mechanisms correspond to different degrees of dehydration and, consequently, depend on water partial pressure and chemical potential. Full relaxation of the atomic positions and the unit cell parameters was performed, and ground-state energies of the equilibrium structures, equilibrium lattice parameters, and atomic arrangements were obtained. The results indicate that which charge compensation mechanism is stable depends on the chemical potential of water. For small values of the water chemical potential the mechanism involving an OH vacancy is stable, but for larger values the mechanism leading to the formation of HSiO4 is Stable. The other mechanisms considered are unstable.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据