4.7 Article

The influence of ultrafast laser pulses on electron transfer in molecular wires studied by a non-Markovian density-matrix approach -: art. no. 044712

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 124, 期 4, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2162537

关键词

-

向作者/读者索取更多资源

New features of molecular wires can be observed when they are irradiated by laser fields. These effects can be achieved by periodically oscillating fields but also by short laser pulses. The theoretical foundation used for these investigations is a density-matrix formalism where the full system is partitioned into a relevant part and a thermal fermionic bath. The derivation of a quantum master equation, either based on a time-convolutionless or time-convolution projection-operator approach, incorporates the interaction with time-dependent laser fields nonperturbatively and is valid at low temperatures for weak system-bath coupling. From the population dynamics the electrical current through the molecular wire is determined. This theory including further extensions is used for the determination of electron transport through molecular wires. As examples, we show computations of coherent destruction of tunneling in asymmetric periodically driven quantum systems, alternating currents and the suppression of the directed current by using a short laser pulse. (c) 2006 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据