4.7 Article

A classical trajectory study of the photodissociation of T1 acetaldehyde:: The transition from impulsive to statistical dynamics -: art. no. 044302

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 124, 期 4, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2139672

关键词

-

向作者/读者索取更多资源

Previous experimental and theoretical studies of the radical dissociation channel of T-1 acetaldehyde show conflicting behavior in the HCO and CH3 product distributions. To resolve these conflicts, a full-dimensional potential-energy surface for the dissociation of CH3CHO into HCO and CH3 fragments over the barrier on the T-1 surface is developed based on RO-CCSD(T)/cc-pVTZ(DZ) ab initio calculations. 20 000 classical trajectories are calculated on this surface at each of five initial excess energies, spanning the excitation energies used in previous experimental studies, and translational, vibrational, and rotational distributions of the radical products are determined. For excess energies near the dissociation threshold, both the HCO and CH3 products are vibrationally cold; there is a small amount of HCO rotational excitation and little CH3 rotational excitation, and the reaction energy is partitioned dominantly (> 90% at threshold) into relative translational motion. Close to threshold the HCO and CH3 rotational distributions are symmetrically shaped, resembling a Gaussian function, in agreement with observed experimental HCO rotational distributions. As the excess energy increases the calculated HCO and CH3 rotational distributions are observed to change from a Gaussian shape at threshold to one more resembling a Boltzmann distribution, a behavior also seen by various experimental groups. Thus the distribution of energy in these rotational degrees of freedom is observed to change from nonstatistical to apparently statistical, as excess energy increases. As the energy above threshold increases all the internal and external degrees of freedom are observed to gain population at a similar rate, broadly consistent with equipartitioning of the available energy at the transition state. These observations generally support the practice of separating the reaction dynamics into two reservoirs: an impulsive reservoir, fed by the exit channel dynamics, and a statistical reservoir, supported by the random distribution of excess energy above the barrier. The HCO rotation, however, is favored by approximately a factor of 3 over the statistical prediction. Thus, at sufficiently high excess energies, although the HCO rotational distribution may be considered statistical, the partitioning of energy into HCO rotation is not. (c) 2006 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据