4.6 Article

Simulation of optical near and far fields of dielectric apertureless scanning probes

期刊

NANOTECHNOLOGY
卷 17, 期 2, 页码 475-482

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0957-4484/17/2/022

关键词

-

向作者/读者索取更多资源

We study apertureless field enhancing optical probes beyond the spherical approximation in a smooth transition towards up to 3 mu m long conical silicon tips. Such tips are used in apertureless scanning near field optical microscopy, which holds the promise of sub 10 nm lateral resolution. A fully three-dimensional numerical solution to the Maxwell equations is obtained with the multiple multipole method giving simultaneously both near fields and scattered far fields. The significance of focused beam excitation for work with long tips is illustrated and the relative influence of relevant length scales such as tip length, excitation wavelength, and beam waist radius is discussed. In the limit of vanishing tip apex radius, the near field grows without bounds, whereas the far field remains finite. We verify that for small apex radii the near field confinement at the tip apex, which is related to the achievable lateral resolution, scales with the inverse of the radius. We find, however, that long tips exhibit a markedly lower confinement than spherical or very short tips. Relevant for experimental studies, we demonstrate how scanning the excitation field with long conical tips can be a useful technique for mapping the focal volume. We show that the normalized near field at the tip apex is robustly tolerant against small misalignments or misorientations of illumination focus and tip apex.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据