4.8 Article

Nitric oxide regulates endocytosis by S-nitrosylation of dynamin

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0508354103

关键词

receptor; infection; protein-protein interaction

资金

  1. NIGMS NIH HHS [GM 62231, R01 GM062231] Funding Source: Medline

向作者/读者索取更多资源

The GTPase dynamin regulates endocytic vesicle budding from the plasma membrane, but the molecular mechanisms involved remain incompletely understood. We report that dynamin, which interacts with NO synthase, is S-nitrosylated at a single cysteine residue (C607) after stimulation of the beta(2) adrenergic receptor. S-nitrosylation increases dynamin self-assembly and GTPase activity and facilitates its redistribution to the membrane. A mutant protein bearing a C607A substitution does not self-assemble properly or increase its enzymatic activity in response to NO. In NO-generating cells, expression of dynamin C607A, like the GTPase-deficient dominant-negative K44A dynamin, inhibits both beta(2) adrenergic receptor internalization and bacterial invasion. Furthermore, exogenous or endogenously produced NO enhances internalization of both beta(2) adrenergic and epidermal growth factor receptors. Thus, NO regulates endocytic vesicle budding by S-nitrosylation of dynamin. Collectively, our data suggest a general NO-dependent mechanism by which the trafficking of receptors may be regulated and raise the idea that pathogenic microbes and viruses may induce S-nitrosylation of dynamin to facilitate cellular entry.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据