4.4 Article

Probing the impact of valency on the routing of arginine-rich peptides into eukaryotic cells

期刊

BIOCHEMISTRY
卷 45, 期 4, 页码 1116-1127

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bi051338e

关键词

-

向作者/读者索取更多资源

Multivalency represents a critical parameter in cell biology responsible for the overall avidity of low-affinity interactions and the triggering of cellular events. Functions such as catalytic activity, cellular uptake, or localization are frequently linked to the oligomeric state of a protein. This study explores the impact of multivalency on the import and routing of peptides into cells. Specifically, cationic import sequences such as decaarginine, decalysine, and the HIV Tat peptide (GRKKRRQRRRAP, residues 4859) as well as the nuclear localization sequence from SV40 large T-antigen were assembled into defined peptide oligomers by fusing them to the tetramerization domain of human p53 (residues 325-355, hp53(tet) domain). The resulting tetravalent peptides typically displayed between 10- and 100-fold enhancements in cellular import and intracellular routing properties in relation to their monomeric homologues. These peptides were not toxic to cells. Flow cytometry results and transfection assays indicated that tetravalent decaarginyl peptides (10R-p53(tet) and NLS-10R-p53(tet)) were the peptides most efficiently routed into cells. Their mechanism of import was subsequently examined on unfixed, viable cells using a combination of metabolic inhibitors, flow cytometry, and microscopy techniques. These studies revealed that tetravalent arginine-rich peptides bind to heparan sulfate on the cell surface, are internalized at 37 degrees C, but not at 4 degrees C, via a clathrin-mediated pathway, and accumulate into endosome-like acidic compartments. A fraction of these tetravalent peptides access the cytosol and accumulate in the nucleus of cells. This study concludes that the oligomerization of proteins harboring arginine-rich peptide chains may profoundly influence their ability to enter and be routed into cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据