4.5 Article

Enhancement of in vivo endothelialization of tissue-engineered vascular grafts by granulocyte colony-stimulating factor

期刊

出版社

WILEY
DOI: 10.1002/jbm.a.30535

关键词

tissue-engineered vascular graft; bone marrow-derived cell; decellularized tissue matrix; granulocyte colony-stimulating factor; endothelialization

向作者/读者索取更多资源

Successful reconstruction of large-diameter blood vessel in humans has been demonstrated using the tissue engineering technique, but improvement in patency of small-diameter bioartificial vascular graft remains a great challenge. This study reports that granulocyte colony-stimulating factor (G-CSF) can enhance in vivo endothelialization of tissue-engineered vascular grafts, which could be used to improve patency of small-diameter vascular graft. Vascular grafts were tissue engineered with decellularized canine abdominal aortas and canine autologous bone marrow-derived cells. Prior to cell seeding onto decellularized graft matrices, bone marrow-derived cells were induced to differentiate into endothelial cells and smooth muscle cells. The cell-seeded vascular grafts were implanted into the abdominal aortas of bone marrow donor dogs. Before and after graft implantation, G-CSF was administered subcutaneously to the dogs (n = 3). The grafts implanted into the dogs not receiving G-CSF were used as controls (n = 3). Eight weeks after implantation, grafts in both groups showed regeneration of vascular tissues including endotheliurn and smooth muscle. Importantly, endothelium formation was more extensive in the G-CSF-treated grafts than in the control grafts, as assessed with reverse transcription polymerase chain reaction, western blot, and immunohistochemistry. In addition, intimal hyperplasia was significantly reduced in the G-CSF-treated grafts compared to the control grafts. This study suggests that G-CSF administration could be applied to improve patency of small-diameter tissue-engineered vascular grafts. (c) 2005 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据