4.7 Article

Synthesis and characterization of RGD peptide grafted poly(ethylene glycol)-b-poly(L-lactide)-b-poly(L-glutamic acid) triblock copolymer

期刊

BIOMACROMOLECULES
卷 7, 期 2, 页码 590-596

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bm050678c

关键词

-

向作者/读者索取更多资源

Advances in tissue engineering require biofunctional scaffolds that can provide not only physical support for cells but also chemical and biological cues needed in forming functional tissues. To achieve this goal, a novel RGD peptide grafted poly(ethylene glycol)-b-poly(L-lactide)-b-poly(L-glutamic acid) (PEG-PLA-PGL/RGD) was synthesized in four steps (1) to prepare diblock copolymer PEG-PLA-OH and to convert its -OH end group into -NH2 (to obtain PEG-PLA-NH2), (2) to prepare triblock copolymer PEG-PLA-PBGL by ring-opening polymerization of NCA (N-carboxyanhydride) derived from benzyl glutamate with diblock copolymer PEG-PLA-NH2 as macroinitiator, (3) to remove the protective benzyl groups by catalytic hydrogenation of PEGPLA-PBGL to obtain PEG-PLA-PGL, and (4) to react RGD (arginine-glycine-(aspartic amide)) with the carboxyl groups of the PEG-PLA-PGL. The structures of PEG-PLA-PGL/RGD and its precursors were confirmed by H-1 NMR, FT-IR, amino acid analysis, and XPS analysis. Addition of 5 wt % PEG-PLA-PGL/RGD into a PLGA matrix significantly improved the surface wettability of the blend films and the adhesion and proliferation behavior of human chondrocytes and 3T3 cells on the blend films. Therefore, the novel RGD-grafted triblock copolymer is expected to find application in cell or tissue engineering.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据