4.8 Article

Ever-fluctuating single enzyme molecules: Michaelis-Menten equation revisited

期刊

NATURE CHEMICAL BIOLOGY
卷 2, 期 2, 页码 87-94

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nchembio759

关键词

-

向作者/读者索取更多资源

Enzymes are biological catalysts vital to life processes and have attracted century-long investigation. The classic Michaelis-Menten mechanism provides a highly satisfactory description of catalytic activities for large ensembles of enzyme molecules. Here we tested the Michaelis-Menten equation at the single-molecule level. We monitored long time traces of enzymatic turnovers for individual beta-galactosidase molecules by detecting one fluorescent product at a time. A molecular memory phenomenon arises at high substrate concentrations, characterized by clusters of turnover events separated by periods of low activity. Such memory lasts for decades of timescales ranging from milliseconds to seconds owing to the presence of interconverting conformers with broadly distributed lifetimes. We proved that the Michaelis-Menten equation still holds even for a fluctuating single enzyme, but bears a different microscopic interpretation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据