4.6 Article

Nonlocal radiative coupling in non monotonic stellar winds (Research note)

期刊

ASTRONOMY & ASTROPHYSICS
卷 446, 期 2, 页码 661-668

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361:20053380

关键词

radiative transfer; stars : winds, outflows

向作者/读者索取更多资源

There is strong observational evidence of shocks and clumping in radiation-driven stellar winds from hot, luminous stars. The resulting non nous monotonic velocity law allows for radiative coupling between distant locations, which is so far not accounted for in hydrodynamic wind simulations. In the present paper, we determine the Sobolev source function and radiative line force in the presence of radiative coupling in spherically symmetric flows, extending the geometry-free formalism of Rybicki & Hummer (1978, ApJ, 219, 654) to the case of three-point coupling, which can result from, e. g., corotating interaction regions, wind shocks, or mass overloading. For a simple model of an overloaded wind, we find that, surprisingly, the flow decelerates at all radii above a certain height when nonlocal radiative coupling is accounted for. We discuss whether radiation-driven winds might in general not be able to re-accelerate after a non monotonicity has occurred in the velocity law.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据