4.7 Article

Noise-memory induced excitability and pattern formation in oscillatory neural models

期刊

PHYSICAL REVIEW E
卷 73, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.73.026216

关键词

-

向作者/读者索取更多资源

We report a noise-memory induced phase transition in an array of oscillatory neural systems, which leads to the suppression of synchronous oscillations and restoration of excitable dynamics. This phenomenon is caused by the systematic contributions of temporally correlated parametric noise, i.e., possessing a memory, which stabilizes a deterministically unstable fixed point. Changing the noise correlation time, a reentrant phase transition to noise-induced excitability is observed in a globally coupled array. Since noise-induced excitability implies the restoration of the ability to transmit information, associated spatiotemporal patterns are observed afterwards. Furthermore, an analytic approach to predict the systematic effects of exponentially correlated noise is presented and its results are compared with the simulations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据