4.4 Article

Regulation and physiologic significance of the agmatine deiminase system of Streptococcus mutans UA159

期刊

JOURNAL OF BACTERIOLOGY
卷 188, 期 3, 页码 834-841

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/JB.188.3.834-841.2006

关键词

-

资金

  1. NIDCR NIH HHS [R01 DE010362, DE10362] Funding Source: Medline

向作者/读者索取更多资源

We previously demonstrated that Streptococcus mutans expresses a functional agmatine deiminase system (AgDS) encoded by the agmatine-inducible aguBDAC operon (A. R. Griswold, Y. Y. Chen, and R. A. Burne, J. Bacteriol. 186:1902-1904, 2004). The AgDS yields ammonia, CO2, and ATP while converting agmatine to putrescine and is proposed to augment the acid resistance properties and pathogenic potential of S. mutans. To initiate a study of agu gene regulation, the aguB transcription initiation site was identified by primer extension and a putative sigma(70)-like promoter was mapped 5' to aguB. Analysis of the genome database revealed an open reading frame (SMU.261c) encoding a putative transcriptional regulator located 239 bases upstream of aguB. Inactivation of SMU.261c decreased AgD activity by sevenfold and eliminated agmatine induction. AgD was also found to be induced by certain environmental stresses, including low pH and heat, implying that the AgDS may also be a part of a general stress response pathway of this organism. Interestingly, an AgDS-deficient strain was unable to grow in the presence of 20 mM agmatine, suggesting that the AgDS converts a growth-inhibitory substance into products that can enhance acid tolerance and contribute to the competitive fitness of the organism at low pH. The capacity to detoxify and catabolize agmatine is likely to have major ramifications on oral biofilm ecology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据