4.5 Article

Experiments and material parameter identification using finite elements. Uniaxial tests and validation using instrumented indentation tests

期刊

EXPERIMENTAL MECHANICS
卷 46, 期 1, 页码 5-18

出版社

SPRINGER
DOI: 10.1007/s11340-006-5857-2

关键词

material parameter identification; non-linear kinematic hardening; viscoplasticity; finite strains; indentation test

向作者/读者索取更多资源

In this article, We focus our attention on the relation between instrumented indentation tests and the prediction by means of finite element calculations. To this end, a finite strain viscoplasticity model of Perzyna-type with non-linear isotropic and kinematic hardening is calibrated at experimental data of steel S690QL. A particular concept for conducting uniaxial tensile and compression tests is taken up in order to represent the basic rate-dependent material behavior. In this respect, an algorithmic framework of material parameter identification using finite elements is proposed leading to a two-stage procedure in the case of the underlying rate-dependent constitutive model. On the basis of the termination points of relaxation the rate-independent equilibrium stress state can be identified and all viscous parts of the model are obtained using rate-dependent loading paths. Finally, use is made of finite elements for predicting indentation experiments, which results in a critical view on modeling and parameter identification on the basis of experimental results occurring in instrumented indentation tests.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据