4.8 Review

Hydrogen tunneling and protein motion in enzyme reactions

期刊

ACCOUNTS OF CHEMICAL RESEARCH
卷 39, 期 2, 页码 93-100

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ar040199a

关键词

-

资金

  1. NIGMS NIH HHS [GM56207] Funding Source: Medline

向作者/读者索取更多资源

Theoretical perspectives on hydrogen transfer reactions in enzymes are presented. The proton-coupled electron transfer reaction catalyzed by soybean lipoxygenase and the hydride transfer reaction catalyzed by dihydrofolate reductase are discussed. The first reaction is nonadiabatic and involves two distinct electronic states, while the second reaction is predominantly adiabatic and occurs on the electronic ground state. Theoretical studies indicate that hydrogen tunneling and protein motion play significant roles in both reactions. In both cases, the proton donor-acceptor distance decreases relative to its equilibrium value to enable efficient hydrogen tunneling. Equilibrium thermal motions of the protein lead to conformational changes that facilitate hydrogen transfer, but the nonequilibrium dynamical aspects of these motions have negligible impact.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据