4.7 Article

Investigations of the reasons for fungal durability of heat-treated beech wood

期刊

POLYMER DEGRADATION AND STABILITY
卷 91, 期 2, 页码 393-397

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.polymdegradstab.2005.04.042

关键词

Coriolus versicolor; durability; heat treatment; polymer degradation; wood

向作者/读者索取更多资源

It is generally accepted that thermal treatment of wood by mild pyrolysis (retification or torrefaction) improves its durability to fungal degradation. However, this property has recently been questioned in the literature and definitely needs further investigation. The increase in durability conferred by thermal treatment is generally explained by four hypotheses: the low affinity of heat-treated wood to water; the generation of toxic compounds during heating; the chemical modification of the main wood polymers and the degradation of hemicelluloses. This study was undertaken to understand the reasons for durability of heat-treated beech wood. In order to confirm or not the above mentioned hypotheses, the durability of heat-treated beech wood towards Coriolus versicolor was evaluated according to different parameters like mass loss. wettability or chemical composition. The heat treatment was carried out in a temperature range of 20-280 degrees C under inert atmosphere for 10 different temperatures. The results show clearly an important correlation between the temperature of treatment and the fungal durability. At the same time, there was insufficient evidence to support the hypothesis of improved decay resistance due to generation of fungicidal compounds or due to the hydrophobic character of wood. Finally, the most plausible hypothesis to explain improvement of wood durability concerns its chemical modifications. Indeed, degradation of hemicellulose associated with other chemical modifications appearing during treatment could be the origin of improved durability. There is a good correlation between decay resistance and mass loss measurements which are directly correlated to hemicellulose degradation. (c) 2005 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据