4.6 Article

Angiostatic activity of DNA methyltransferase inhibitors

期刊

MOLECULAR CANCER THERAPEUTICS
卷 5, 期 2, 页码 467-475

出版社

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1535-7163.MCT-05-0417

关键词

-

类别

向作者/读者索取更多资源

Inhibitors of DNA methyltransferases (DNMT) and histone deacetylases can reactivate epigenetically silenced tumor suppressor genes and thereby decrease tumor cell growth. Little, however, is known on the effects of these compounds in endothelial cell biology and tumor angiogenesis. Here, we show that the DNMT inhibitors 5-aza-2'-deoxycytidine and zebularine markedly decrease vessel formation in different tumor models. We show that DNMT inhibitors are antiproliferative for tumor-conditioned endothelial cells, without affecting endothelial cell apoptosis and migration. Furthermore, these compounds inhibit angiogenesis in vitro and in vivo as shown by inhibition of endothelial cells sprouting in a three-dimensional gel and inhibition of microvessel formation in the chorioallantoic membrane, respectively. 5-Aza-2'-deoxycytidine, as well as the histone deacetylase inhibitor trichostatin A, reactivates the growth-inhibiting genes TSP1, JUNB, and IGFBP3, which are suppressed in tumor-conditioned endothelial cells. Despite enhanced DNMT activity and increased overall genomic methylation levels in tumor-conditioned endothelial cells, silencing of these genes seemed not to be regulated by direct promoter hypermethylation. For IGFBP3, gene expression in endothelial cells correlated with histone H3 acetylation patterns. In conclusion, our data show that DNMT inhibitors have angiostatic activity in addition to their inhibitory effects on tumor cells. This dual action of these compounds makes them promising anticancer therapeutics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据