4.8 Article

Multi layer-assembled microchip for enzyme immobilization as reactor toward low-level protein identification

期刊

ANALYTICAL CHEMISTRY
卷 78, 期 3, 页码 801-808

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac051463w

关键词

-

向作者/读者索取更多资源

A microchip reactor has been developed on the basis of a layer-by-layer approach for fast and sensitive digestion of proteins. The resulting peptide analysis has been carried out by matrix-assisted laser desorption ionization time-of-Right mass spectrometry (MALDI-TOF MS). Natural polysaccharides, positively charged chitosan (CS), and negatively charged hyaluronic acid (HA) were multilayer-assembled onto the surface of a poly(ethylene terephthalate) (PET) microfluidic chip to form a microstructured and biocompatible network for enzyme immobilization. The construction of CS/HA assembled multilayers on the PET substrate was characterized by AFM imaging, ATR-IR, and contact angle measurements. The controlled adsorption of trypsin in the multilayer membrane was monitored using a quartz crystal microbalance and an enzymatic activity assay. The maximum proteolytic velocity of the adsorbed trypsin was similar to 600 mM/min mu g, thousands of times faster than that in solution. BSA, myoglobin, and cytochrome c were used as model substrates for the tryptic digestion. The standard proteins were identified at a low femtomole per analysis at a concentration of 0.5 ng/mu L with the digestion time < 5s. This simple technique may offer a potential solution for low-level protein analysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据