4.4 Article

Interleukin 1β (IL1B) signaling is a critical component of radiation-induced skin fibrosis

期刊

RADIATION RESEARCH
卷 165, 期 2, 页码 181-191

出版社

RADIATION RESEARCH SOC
DOI: 10.1667/RR3478.1

关键词

-

资金

  1. NCI NIH HHS [CA11051-30] Funding Source: Medline

向作者/读者索取更多资源

Interleukin 1 beta (IL1B), a potent pro-inflammatory cytokine, is directly up-regulated by radiation and is known to regulate other inflammation-related molecules, such as the matrix metalloproteinases (MMPs) and their endogenous inhibitors (TIMPs). However, the nature of the interaction of IL1B with MMPs and TIMPs in radiation-induced skin fibrosis is unknown. We examined the response of primary dermal keratinocytes, fibroblasts and endothelial cells to single-fraction radiation (10 Gy) and compared the results to a temporal sequence of histology from irradiated C57BL/6 and IL1R1 knockout mice. These studies showed that keratinocytes are the major IL1-producing cells in vitro and that radiation induces an immediate and chronic elevation in the expression of IL1B mRNA in the skin of C57BL/6 mice. This elevation was principally early and was less pronounced in the IL1R1 knockout strain, which also demonstrated reduced late radiation fibrosis. Radiation also increased expression of MMP mRNA in C57BL/6 mice. Finally, exogenous IL1B protein induced robust endogenous IL1B mRNA expression, along with a brisk increase in MMPs and collagen III, but only in the C57BL/6 mice. In conclusion, these data suggest that IL1B plays a critical role in radiation-induced fibrosis and that the increased MMPs fail to block the IL1-related collagen accumulation. (c) 2006 by Radiation Research Society.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据