4.1 Article

The dynamics of choice among multiple alternatives

期刊

JOURNAL OF MATHEMATICAL PSYCHOLOGY
卷 50, 期 1, 页码 30-57

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jmp.2005.10.003

关键词

leaky accumulator; drift-diffusion model; neural network; Hick's law; multi-hypothesis sequential test; sequential ratio test

向作者/读者索取更多资源

We consider neurally based models for decision-making in the presence of noisy incoming data. The two-alternative forced-choice task has been extensively studied, and in that case it is known that mutually inhibited leaky integrators in which leakage and inhibition balance can closely approximate a drift-diffusion process that is the continuum limit of the optimal sequential probability ratio test (SPRT). Here we study the performance of neural integrators in n >= 2 alternative choice tasks and relate them to a multihypothesis sequential probability ratio test (MSPRT) that is asymptotically optimal in the limit of vanishing error rates. While a simple race model can implement this 'max-vs-next' MSPRT, it requires an additional computational layer, while absolute threshold crossing tests do not require such a layer. Race models with absolute thresholds perform relatively poorly, but we show that a balanced leaky accumulator model with an absolute crossing criterion can approximate a 'max-vs-ave' test that is intermediate in performance between the absolute and max-vs-next tests. We consider free and fixed time response protocols, and show that the resulting mean reaction times under the former and decision times for fixed accuracy under the latter obey versions of Hick's law in the low error rate range, and we interpret this in terms of information gained. Specifically, we derive relationships of the forms log(n-1), log(n), or log(n+1) depending on error rates, signal-to-noise ratio, and the test itself. We focus on linearized models, but also consider nonlinear effects of neural activities (firing rates) that are bounded below and show how they modify Hick's law. (c) 2005 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据