4.5 Article

TFAM-dependent and independent dynamics of mtDNA levels in C2C12 myoblasts caused by redox stress

期刊

BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS
卷 1760, 期 2, 页码 141-150

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.bbagen.2005.12.007

关键词

TFAM; mtTFA; mtDNA; regeneration; proliferation; redox stress

向作者/读者索取更多资源

TFAM is an essential protein factor for the initiation of transcription of the mtDNA. It also functions as a packaging factor, which stabilizes the mtDNA pool. To investigate the regulatory role of TFAM for regeneration and proliferation of the mtDNA pool, we exposed the muscle cell line C2C12 to a severe redox stress (H2O2) or to a moderate redox stress (GSH depletion), determined the dynamics of the mtDNA levels and correlated this with the TFAM protein levels. H2O2 caused a concentration-dependent loss of mtDNA molecules. The mtDNA levels recovered slowly within 3 days after H2O2 stress. The TFAM protein was less degraded than the mtDNA indicating an accumulation of TFAM protein per mtDNA after H2O2 stress. Overexpression of TFAM did not protect against the mtDNA loss after H2O2 stress but shortened the recovery time. GSH depletion led to a proliferation of the mtDNA pool. Although the mtDNA levels increased the TFAM protein levels were unaffected by the GSH depletion. We conclude that the accumulation of the TFAM protein after H2O2 stress contributes to the regeneration of the mtDNA pool but that other mechanisms, independent from the TFAM protein amount have to be postulated to explain the proliferation of the mtDNA pool after GSH depletion. (c) 2006 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据