4.8 Article

Evidence for purifying selection against synonymous mutations in mammalian exonic splicing enhancers

期刊

MOLECULAR BIOLOGY AND EVOLUTION
卷 23, 期 2, 页码 301-309

出版社

OXFORD UNIV PRESS
DOI: 10.1093/molbev/msj035

关键词

codon usage bias; mutation rate; purifying selection; splicing; synonymous sites

资金

  1. Medical Research Council [G0300415] Funding Source: researchfish
  2. Medical Research Council [G0300415] Funding Source: Medline
  3. MRC [G0300415] Funding Source: UKRI

向作者/读者索取更多资源

Silent sites in mammals have classically been assumed to be free front selective pressures. Consequently, the synonymous substitution rate (K-s) is often used as it proxy for the Mutation rate. Although accumulating evidence demonstrates that the assumption is not valid, the mechanism by which selection acts remain Unclear. Recent work has revealed that the presence of exonic splicing enhancers (ESEs) in coding sequence might influence synonyomous evolution. ESEs are predominantly located near intron-exon junctions, which may explain the reduced single-nucleotide polymorphism (SNP) density in these regions. Here we show that synonymous Sites in putative ESEs evolve more slowly than the remaining exonic sequence. Differential mutabilities of ESEs do not appear to explain this difference. We observe that Substitution frequency ill four-fold synonymous sites decreases its one approaches the ends of exons, consistent with the existing SNP data. This gradient is at least in part explained by ESEs being more abundant near junctions. Between-gene variation in K-s is hence partly explained by the proportion of the gene that acts as,in ESE. Given the relative abundance of ESEs and the reduced rates of synonymous divergence within them, we estimate that constraints on synonymous evolution within ESEs Causes the true mutation rate to be Underestimated by not more than similar to 8%. We also find that K-s Outside of ESEs is much lower in alternatively spliced exons than in constitutive exons, implying that other causes of selection on synonymous mutations exist. Additionally, selection on ESEs appears to affect nonsynonymous sites and may explain why amino acid usage near intron-exon junctions is nonrandom.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据