4.7 Article

Stellar bar evolution in cuspy and flat-cored triaxial cdm halos

期刊

ASTROPHYSICAL JOURNAL
卷 637, 期 2, 页码 582-597

出版社

IOP Publishing Ltd
DOI: 10.1086/498493

关键词

dark matter; galaxies : evolution; galaxies : formation; galaxies : halos; galaxies : kinematics and dynamics; galaxies : structure

向作者/读者索取更多资源

We analyze the formation and evolution of stellar bars in galactic disks embedded in mildly triaxial cold dark matter (CDM) halos that have density distributions ranging from large flat cores to cuspy profiles. We have applied tailored numerical simulations of analytical and live halos that include the feedback from disk/bar system onto the halo in order to test and extend earlier work by El-Zant and Shlosman. The latter employed the method of Liapunov exponents to analyze the fate of bars in analytical asymmetric halos. We find the following: (1) The bar growth is very similar in all rigid axisymmetric and triaxial halos. (2) Bars in live models experience vertical buckling instability and the formation of a pseudobulge with a boxy/peanut shape, while bars in rigid halos do not buckle. ( 3) In live axisymmetric halos, the bar strength varies by a factor of less than or similar to 2, in growth or decay, during the secular evolution following the buckling. The bar pattern speed evolution (i.e., deceleration) anticorrelates with the halo core size. In such halos, the bar strength is larger for smaller disk-to-halo mass ratios (D/H) within disk radii, the bar size correlates with the halo core sizes, and the bar pattern speeds correlate with the halo central mass concentration. In contrast, bars embedded in live triaxial halos have a starkly different fate: they dissolve on a timescale of similar to 1.5-5 Gyr due to the onset of chaos over continuous zones, sometimes leaving behind a weak oval distortion. The onset of chaos is related to the halo triaxiality, the fast-rotating bar, and the halo cuspiness. Before the bar dissolves, the region outside it develops strong spiral structures, especially in the live triaxial halos. (4) More angular momentum is absorbed ( fractionally) by the triaxial halos than in the axisymmetric models. The disk-halo angular momentum exchange is mediated by the lower resonances in the latter models. (5) Cuspy halos are more susceptible than flat-core halos to having their prolateness washed out by the action of the bar. The subsequent evolution is then similar to the case of cuspy axisymmetric halos. We analyze the above results on disk and bar evolution in terms of the stability of trajectories and development of chaos in the system. We set important constraints on the triaxiality of dark matter (DM) halos by comparing our predictions to recent observational results on the properties of bars out to intermediate redshifts z similar to 1.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据