4.8 Article

The dispersal of replication proteins after etoposide treatment requires the cooperation of Nbs1 with the ataxia telangiectasia Rad3-related/Chk1 pathway

期刊

CANCER RESEARCH
卷 66, 期 3, 页码 1675-1683

出版社

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/0008-5472.CAN-05-2741

关键词

-

类别

向作者/读者索取更多资源

In mammalian cells, DNA replication takes place in functional subnuclear compartments, called replication factories, where replicative factors accumulate. The distribution pattern of replication factories is diagnostic of the different moments (early, mid, and late) of the S phase. This dynamic organization is affected by different agents that induce cell cycle checkpoint activation via DNA damage or stalling of replication forks. Here, we explore the cell response to etoposide, an anticancer drug belonging to the topoisomerase 11 poisons. Etoposide does not induce an immediate block of DNA synthesis and progressively affects the distribution of replication proteins in S phase. First, it triggers the formation of large nuclear foci that contain the single-strand DNA binding protein replication protein A (RPA), suggesting that lesions produced by the drug are processed into extended single-stranded regions. These RPA foci colocalize with DNA replicated at the beginning of the treatment. Etoposide a so triggers the dispersal of replicative proteins, proliferating cell nuclear antigen and DNA ligase 1, from replication factories. This event requires the activity of the ataxia telangiectasia Rad3-related (ATR) checkpoint kinase. By comparing the effect of the drug in cell lines defective in different DNA repair and checkpoint pathways, we show that, along with the downstream kinase Chk1, the Nbs1 protein, mutated in the Nijmegen breakage syndrome, is also relevant for this response and for ATR-dependent phosphorylation. Finally, our analysis evidences a critical role of Nbs1 in the etoposide-induced inhibition of DNA replication in early S phase.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据