4.3 Article Proceedings Paper

A hybrid approach for efficient and robust parameter estimation in biochemical pathways

期刊

BIOSYSTEMS
卷 83, 期 2-3, 页码 248-265

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biosystems.2005.06.016

关键词

systems biology; parameter estimation; global optimisation; identifiability; optimal experimental design

向作者/读者索取更多资源

Developing suitable dynamic models of biochemical pathways is a key issue in Systems Biology. Predictive models for cells or whole organisms could ultimately lead to model-based predictive and/or preventive medicine. Parameter estimation (i.e. model calibration) in these dynamic models is therefore a critical problem. In a recent contribution [Moles, C.G., Mendes, P., Banga, J.R., 2003b. Parameter estimation in biochemical pathways: a comparison of global optimisation methods. Genome Res. 13, 2467-2474], the challenging nature Of Such inverse problems was highlighted considering a benchmark problem, and concluding that only a certain type of stochastic global optimisation method, Evolution Strategies (ES), was able to solve it successfully, although at a rather large computational cost. In this new contribution, we present a new integrated optimisation methodology with a number of very significant improvements: (i) computation time is reduced by one order of magnitude by means of a hybrid method which increases efficiency while guaranteeing robustness, (ii) measurement noise (errors) and partial observations are handled adequately, (iii) automatic testing of identifiability of the model (both local and practical) is included and (iv) the information content of the experiments is evaluated via the Fisher information matrix, with subsequent application to design of new optimal experiments through dynamic optimisation. (C) 2005 Elsevier Ireland Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据