4.8 Article

How single conjugated polymer molecules respond to electric fields

期刊

NATURE MATERIALS
卷 5, 期 2, 页码 141-146

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nmat1549

关键词

-

向作者/读者索取更多资源

Conjugated polymers find applications in a range of devices such as light-emitting diodes, field-effect transistors and solar cells. The elementary electronic response of these semiconductors to electric fields is understood in terms of nanoscale perturbations of charge density. We demonstrate a general breaking of spatial charge symmetry by considering the linear Stark effect in the emission of single chromophores on individual chains. Spectral shifts of several nanometres occur due to effective dipoles exceeding 10 D. Although the electric field does not ionize the exciton, some molecules exhibit field-induced intensity modulations. This quenching illustrates the equivalence of charge symmetry breaking and polaron-pair or charge-transfer-state formation, and provides a microscopic picture of permanent charging, which leads to doping and exciton dissociation in actual devices. In addition to using this tuneable emission in single-photon electro-optic modulators, hysteresis in the Stark shift suggests a route to designing nanoscale memory elements such as molecular switches.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据