4.5 Article

Involvement of the ATR- and ATM-dependent checkpoint responses in cell cycle arrest evoked by pierisin-1

期刊

MOLECULAR CANCER RESEARCH
卷 4, 期 2, 页码 125-133

出版社

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1541-7786.MCR-05-0104

关键词

-

向作者/读者索取更多资源

Pierisin-1 identified from the cabbage butterfly, Pieris rapae, is a novel mono-ADP-ribosylating toxin that transfers the ADP-ribose moiety of NAD at N-2 of dG in DNA. Resulting mono-ADP-ribosylated DNA adducts cause mutations and the induction of apoptosis. However, little is known about checkpoint responses elicited in mammalian cells by the formation of such bulky DNA adducts. In the present study, it was shown that DNA polymerases were blocked at the specific site of mono-ADP-ribosylated dG, which might lead to the replication stress. Pierisin-1 treatment of HeLa cells was found to induce an intra-S-phase arrest through both ataxia telangiectasia mutated (ATM) and Rad3-related (ATR) and ATM pathways, and ATR pathway also contributes to a G(2)-M-phase delay. In the colony survival assays, Rad17-/- DT40 cells showed greater sensitivity to pierisin-1-induced cytotoxicity than wild-type and ATM(-/-) DT40 cells, possibly due to defects of checkpoint responses, such as the Chk1 activation. Furthermore, apoptotic 50-kb DNA fragmentation was observed in the HeLa cells, which was well correlated with occurrence of phosphorylation of Chk2. These results thus suggest that pierisin-1 treatment primarily activates ATR pathway and eventually activates ATM pathway as a result of the induction of apoptosis. From these findings, it is suggested that mono-ADP-ribosylation of DNA causes a specific type of fork blockage that induces checkpoint activation and signaling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据