4.4 Review

Fluorescence fluctuation spectroscopy in reduced detection volumes

期刊

CURRENT PHARMACEUTICAL BIOTECHNOLOGY
卷 7, 期 1, 页码 51-66

出版社

BENTHAM SCIENCE PUBL LTD
DOI: 10.2174/138920106775789629

关键词

fluorescence fluctuation spectroscopy; fluorescence correlation spectroscopy; fluorescence intensity distribution analysis; diffraction limit; decreased detection volumes; total internal reflection; nanostructures; near-fields; surface plasmons; and stimulated emission depletion

向作者/读者索取更多资源

Fluorescence fluctuation spectroscopy is a versatile technique applied to in vitro and in vivo investigations of biochemical processes Such as interactions, mobilities or densities with high specifity and sensitivity. The prerequisite of this dynamical fluorescence technique is to have, at a time, only few fluorescent molecules in the detection volume in order to generate significant fluorescence fluctuations. For Usual confocal fluorescence microscopy this amounts to a useful concentration in the nanomolar range. The concentration of many biomolecules in living cell or on cell membranes is, however, often quite high, usually in the micro- to the millimolar range. To allow fluctuation spectroscopy and track intracellular interaction or localization of single fluorescently labeled biomolecules ill Such crowded environments, development of detection volumes with nanoscale resolution is necessary. As diffraction prevents this in the case of light microscopy, new (non-invasive) optical concepts have been developed. In this mini-review article we present recent advancements, implemented to decrease the detection volume below that of normal fluorescence microscopy. Especially, their combination with fluorescence fluctuation spectroscopy is emphasized.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据