4.8 Article

Fabrication, characterization, and biological assessment of multilayered DNA-coatings for biomaterial purposes

期刊

BIOMATERIALS
卷 27, 期 5, 页码 691-701

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2005.06.015

关键词

AFM; cell culture; cell morphology; cell proliferation; cell viability; electrostatic self-assembly; fibroblast; FTIR; MIT assay; mutagenicity; nanotopography; SEM; surface modification; titanium

向作者/读者索取更多资源

This study describes the fabrication of two types of multilayered coatings onto titanium by electrostatic self-assembly (ESA), using deoxyribosenucleic acid (DNA) as the anionic polyelectrolyte and poly-D-lysine (PDL) or poly(allylamine hydrochloride) (PAH) as the cationic polyelectrolyte. Both coatings were characterized using UV-vis spectrophotometry, atomic force microscopy (AFM), X-ray photospectroscopy (XPS), contact angle measurements, Fourier transform infrared spectroscopy (FTIR), and for the amount of DNA immobilized. The mutagenicity of the constituents of the coatings was assessed. Titanium substrates with or without multilayered DNA-coatings were used in cell culture experiments to study cell proliferation, viability, and morphology. Results of UV-vis spectrophotometry, AFM, and contact angle measurements clearly indicated the progressive build-up of the multilayered coatings. Furthermore, AFM and XPS data showed a more uniform build-up and morphology of [PDL/DNA]-coatings compared to [PAH/DNA]-coatings. DNA-immobilization into both coatings was linear, and approximated 3 mu g/cm(2) into each double-layer. The surface morphology of both types of multilayered DNA-coatings showed elevations in the nanoscale range. No mutagenic effects of DNA, PDL, or PAH were detected, and cell viability and morphology were not affected by the presence of either type of multilayered DNA-coating. Still, the results of the proliferation assay revealed an increased proliferation of primary rat dermal fibroblasts on both types of multilayered DNA-coatings compared to non-coated controls. The biocompatibility and functionalization of the coatings produced here, will be assessed in subsequent cell culture and animal-implantation studies. (c) 2005 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据