4.5 Article

Long inverted repeats in eukaryotic genomes: Recombinogenic motifs determine genomic plasticity

期刊

FEBS LETTERS
卷 580, 期 5, 页码 1277-1284

出版社

WILEY-BLACKWELL
DOI: 10.1016/j.febslet.2006.01.045

关键词

long inverted repeat; recombinogenic LIRs; eukaryotic genomes

向作者/读者索取更多资源

Inverted repeats are unstable motifs in a genome, having a causal relation to fragment rearrangements and recombination events. We have investigated long inverted repeats (LIR) of > 30 bp in length in eukaryotic genomes to assess their contribution to genome stability. An algorithm was first designed for searching for LIRs with < 2 kb internal spacers and > 85% identity (degree of homology between repeat copies of a LIR). There are much fewer LIRs in yeast, fruitfly, pufferfish and chicken than in Caenorhabditis elegans, zebrafish, frog and human. However, the high LIR frequencies do not necessarily imply high genome instability because of variant internal spacers and stem lengths and identities. From the collection of identified LIRs, we selected recombinogenic LIRs that had a short internal spacer and a high copy identity and were prone to induce high instability. We found that a relatively high proportion (5-9.8%) of the LIRs in C elegans, zebrafish and frog were recombinogenic LIRs. In contrast, the proportions in human and mouse LIRs were quite low (0.4-1.1%) basically accounting for long internal spacers. We suggest that C elegans, zebrafish and frog genomes are unstable in terms of the LIR frequency and the proportion of recombinogenic LIRs. For the other genomes, LIRs most likely have a minor impact. (c) 2006 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据