4.5 Article

Causes of mechanically induced collagen damage in articular cartilage

期刊

JOURNAL OF ORTHOPAEDIC RESEARCH
卷 24, 期 2, 页码 220-228

出版社

WILEY
DOI: 10.1002/jor.20027

关键词

cartilage; collagen; damage; finite element method

向作者/读者索取更多资源

Osteoarthritis (CA) is a multifactorial disease, associated with articular cartilage degeneration and eventually joint destruction. The phases of the disease have been described in detail, and mechanical factors play an important role in the initiation of OA, but many questions remain about its etiology. Swelling of cartilage, one of the earliest signs of damage, is proportional to the amount of collagen damage. This strongly suggests that damage to the collagen network is an early event in cartilage degeneration. The goal of this study was to determine the mechanical cause of early collagen damage in articular cartilage after mechanical overloading. Both the shear strain along the fibrils and the maximum fibril strains were evaluated as possible candidates for causing collagen damage. This evaluation was done by comparing the locations of maximum shear and tensile strains with the locations of initial collagen damage after mechanical overloading in bovine explants as found using antibodies directed against denatured type II collagen (Co12-3/4M). Collagen damage could be initiated by excessive shear strains along the collagen fibrils, and by excessive fibrils strains. The locations of collagen damage after mechanical overloading were highly dependent on the cartilage thickness, with thinner cartilage being more susceptible to damage than thicker samples. (c) 2005 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据