4.3 Article

Gradual DNA demethylation of the Oct4 promoter in cloned mouse embryos

期刊

MOLECULAR REPRODUCTION AND DEVELOPMENT
卷 73, 期 2, 页码 180-188

出版社

WILEY
DOI: 10.1002/mrd.20411

关键词

nuclear reprogramming; cloning; mouse embryo; DNA methylation; Oct4; pluripotency regulator

资金

  1. NICHD NIH HHS [HD040208, HD042772] Funding Source: Medline

向作者/读者索取更多资源

During differentiation, somatic cell nuclei acquire unique patterns of epigenetic modifications, such as DNA methylation, which affect the transcriptional activity of specific genes. Upon transfer into oocytes, however, the somatic nucleus undergoes reprogramming of these epigenetic modifications to achieve pluripotency. Oct4 is one of the critical pluripotency regulators, and is expressed in the germ line, including the pluripotent early embryonic cells. Previous studies showed that the upstream regulatory sequences of the Oct4 gene are distinctly methylated in somatic cells, and the DNA methylation of the regulatory sequences suppresses the transcriptional activity. Thus, successful reprogramming of the somatic cell nucleus to gain pluripotency must be accompanied by the demethylation of the Oct4 regulatory sequences. Here, we investigated the methylation pattern of the Oct4 promoter during early development of cloned mouse embryos. We found that the Oct4 promoter was only gradually demethylated during the early cleavage stages and that the ineffective demethylation of the promoter was associated with developmental retardation. We also found that the upstream sequences of the other pluripotency regulators, namely Nanog, Sox2, and Foxd3, were considerably under-methylated in cumulus cells. These results suggest that the Oct4 gene, as compared to the other pluripotency regulators, needs to undergo extensive demethylation during nuclear reprogramming, and that the failure of such demethylation is associated with inefficient development of cloned somatic cell embryos.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据