4.6 Article

Sources and effects of electrode impedance during deep brain stimulation

期刊

CLINICAL NEUROPHYSIOLOGY
卷 117, 期 2, 页码 447-454

出版社

ELSEVIER IRELAND LTD
DOI: 10.1016/j.clinph.2005.10.007

关键词

electrode-tissue interface; tissue encapsulation; voltage-controlled stimulation; deep brain stimulation

资金

  1. NINDS NIH HHS [NS-52042, NS-50449, R21 NS050449, F32 NS052042] Funding Source: Medline

向作者/读者索取更多资源

Objective: Clinical impedance measurements for deep brain stimulation (DBS) electrodes in human patients are normally in the range 500-1500 Omega. DBS devices utilize voltage-controlled stimulation; therefore, the current delivered to the tissue is inversely proportional to the impedance. The goals of this study were to evaluate the effects of various electrical properties of the tissue medium and electrode-tissue interface on the impedance and to determine the impact of clinically relevant impedance variability on the volume of tissue activated (VTA) during DBS. Methods: Axisymmetric finite-element models.(FEM) of the DBS system were constructed with explicit representation of encapsulation layers around the electrode and implanted pulse generator. Impedance was calculated by dividing the stimulation voltage by the integrated current density along the active electrode contact. The models utilized a Fourier FEM solver that accounted for the capacitive components of the electrode-tissue interface during voltage-controlled stimulation. The resulting time- and space-dependent voltage waveforms generated in the tissue medium were superimposed onto cable model axons to calculate the VTA. Results: The primary determinants of electrode impedance were the thickness and conductivity of the encapsulation layer around the electrode contact and the conductivity of the bulk tissue medium. The difference in the VTA between our low (790 Omega) and high (1244 Omega) impedance models with typical DBS settings (-3 V, 90 mu s, 130 Hz pulse train) was 121 mm(3), representing a 52% volume reduction. Conclusions: Electrode impedance has a substantial effect on the VTA and accurate representation of electrode impedance should be an explicit component of computational models of voltage-controlled DBS. Significance: Impedance is often used to identify broken leads (for values > 2000 Omega) or short circuits in the hardware (for values < 50 Omega); however, clinical impedance values also represent an important parameter in defining the spread of stimulation during DBS. (c) 2005 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据