4.5 Article

Electrochemistry of nanopore electrodes in low ionic strength solutions

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 110, 期 4, 页码 1768-1774

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp054704c

关键词

-

向作者/读者索取更多资源

The steady-state voltammetric behavior of truncated conical nanopore electrodes (20-200 nm orifice radii) has been investigated in low ionic strength solutions. Voltammetric currents at the nanopore electrode reflect both diffusive and migrational fluxes of the redox molecule and, thus, are strongly dependent on the charge of the redox molecule and the relative concentrations of the supporting electrolyte and redox molecule. In acetonitrile solutions, the limiting current for the oxidation of the positively charged ferrocenylmethyltrimethylammonium ion is suppressed at low supporting electrolyte concentrations, while the limiting current for the oxidation of the neutral species ferrocene is unaffected by the ionic strength. The dependence of the limiting current on the relative concentrations of the supporting electrolyte and redox molecule is accurately predicted by theory previously developed for microdisk electrodes. Anomalous values of the voltammetric half-wave potential observed at very small nanopore electrodes (< 50 nm radius orifice radii) are ascribed to a boundary potential between the pore interior and bulk solution (i.e., a Donnan-type potential).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据