4.7 Article

Structure-based prediction of bZIP partnering specificity

期刊

JOURNAL OF MOLECULAR BIOLOGY
卷 355, 期 5, 页码 1125-1142

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmb.2005.11.036

关键词

coiled coil; interaction specificity; computational prediction; protein structure

资金

  1. NIGMS NIH HHS [GM67681, R01 GM067681] Funding Source: Medline

向作者/读者索取更多资源

Predicting protein interaction specificity from sequence is an important goal in computational biology. We present a model for predicting the interaction preferences of coiled-coil peptides derived from bZIP transcription factors that performs very well when tested against experimental protein microarray data. We used only sequence information to build atomic-resolution structures for 1711 dimeric complexes, and evaluated these with a variety of functions based on physics, learned empirical weights or experimental coupling energies. A purely physical model, similar to those used for protein design studies, gave reasonable performance. The results were improved significantly when helix propensities were used in place of a structurally explicit model to represent the unfolded reference state. Further improvement resulted upon accounting for residue-residue interactions in competing states in a generic way. Purely physical structure-based methods had difficulty capturing core interactions accurately, especially those involving polar residues such as asparagine. When these terms were replaced with weights from a machine-learning approach, the resulting model was able to correctly order the stabilities of over 6000 pairs of complexes with greater than 90% accuracy. The final model is physically interpretable, and suggests specific pairs of residues that are important for bZIP interaction specificity. Our results illustrate the power and potential of structural modeling as a method for predicting protein interactions and highlight obstacles that must be overcome to reach quantitative accuracy using a de novo approach. Our method shows unprecedented performance in predicting protein-protein interaction specificity accurately using structural modeling and suggests that predicting coiled-coil interactions generally may be within reach. (c) 2005 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据