4.7 Article

Toward development of water soluble dye derivatized nitrosyl compounds for photochemical delivery of NO

期刊

INORGANIC CHEMISTRY
卷 45, 期 3, 页码 1192-1200

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ic051723s

关键词

-

向作者/读者索取更多资源

This report describes the synthesis, spectroscopy, and photochemistry of a new fluorescein-derivatized iron sulfur nitrosyl compound, the Roussin's red salt ester bis-((mu S,mu-S')-fluorescein-2-thioethyl-ester)-tetranitrosyldiiron (FluorRSE). Under continuous photolysis Fluor-RSE decomposes with moderate quantum yields (0.0036 +/- 0.0005 at lambda(irr) = 436 nm) with the corresponding release of most of the NO carried by the Fe2S2NO4 cluster. Large changes in the optical absorptivity occur upon photolysis of the Fluor-RSE, and these changes have been attributed to the different protic forms available to the fluorescein chromophore as it is separated from the cluster. Steady-state luminescence experiments have shown that the fluorescence of Fluor-RSE is about 85% quenched relative to the model compound ethyl fluorescein (Fluor-Et). Thus, it is clear that excitation of the fluorescein chromophore antennae is followed by energy transfer to the Fe/S/NO cluster at a rate at least comparable to fluorescence. However, the effect of the iron-sulfur core on the fluorescent lifetimes from fluorescein chromophore is much smaller. A single-exponential decay (tau = 3.3 ns) was seen for Fluor-RSE that is only modestly shorter than that for Fluor-Et (tau = 4.5 ns), and this is the effect of the smaller radiative rate constant (k(r)) for the former. These systems further demonstrate that attachment of a pendant dye chromophore as an antenna significantly improves the effective rate for photochemical NO generation from the Roussin's red salt esters at longer excitation wavelengths.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据