4.7 Article

Explicitly correlated second-order perturbation theory using density fitting and local approximations

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 124, 期 5, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2150817

关键词

-

向作者/读者索取更多资源

Three major obstacles in electronic structure theory are the steep scalings of computer time with respect to system size and basis size and the slow convergence of correlation energies in orbital basis sets. Three solutions to these are, respectively, local methods, density fitting, and explicit correlation; in this work, we combine all three to produce a low-order scaling method that can achieve accurate MP2 energies for large systems. The errors introduced by the local approximations into the R12 treatment are analyzed for 16 chemical reactions involving 21 molecules. Weak pair approximations, as well as local resolution of the identity approximations, are tested for molecules with up to 49 atoms, over 100 correlated electrons, and over 1000 basis functions. (c) 2006 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据