4.4 Article

Functionally relevant measures of spatial complexity in neuronal dendritic arbors

期刊

JOURNAL OF THEORETICAL BIOLOGY
卷 238, 期 3, 页码 505-526

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jtbi.2005.06.001

关键词

three-dimensional; dendritic morphometry; spatial complexity; Sholl analysis

资金

  1. NCRR NIH HHS [RR16754] Funding Source: Medline
  2. NIA NIH HHS [AG05138, AG06649] Funding Source: Medline
  3. NIDCD NIH HHS [DC04632, DC05669] Funding Source: Medline
  4. NIMH NIH HHS [MH58911, MH060734] Funding Source: Medline

向作者/读者索取更多资源

We introduce a set of scaling exponents for characterizing global 3D morphologic properties of mass distribution, branching and taper in neuronal dendritic arbors, capable of distinguishing functionally relevant changes in dendritic complexity that standard Sholl analysis and fractal analysis cannot. We demonstrate that the scaling exponent for mass distribution, d(M), comprises a sum of independent scaling exponents for branching, d(N), and taper, d(T). The accuracy of experimental measurements of the scaling exponents was verified using computer generated self-similar binary trees of known fractal dimension, and with prescribed amounts of branching and taper. The theory was applied to measuring 3D spatial complexity in the apical and basal dendritic trees of two functionally distinct types of macaque monkey neocortical pyramidal neurons: long corticocortical projection neurons from superior temporal cortex to area 46 of the prefrontal cortex (PFC), and local projection neurons within area 46 of the PFC. Two distinct scaling subregions (proximal and medial) were identified in both apical and basal trees of the two neuron types, and scaling exponents were fitted. A small but significant difference in mass scaling in the proximal region distinguished long from local projection neurons. Interestingly, both classes of neuron exhibited a homeostatic pattern of mass distribution across the two regions: despite large differences between proximal and medial regions in branching and tapering exponents, these effects were compensatory, resulting in a uniform, slow reduction of mass with distance from the soma, over both scaling regions of the apical and basal trees. Given a uniformly excitable membrane, the electrotonic properties of dendritic arbors depend entirely upon mass distribution, and its relative contributions from dendritic branching and taper. By capturing each of these complex morphologic properties in a single, globally descriptive parameter, the new 3D scaling exponents introduced in this study permit efficient morphometric characterization of complex dendritic arbors in the fewest possible parameters, that can be directly related to their electrotonic properties, and hence to neuronal function. (C) 2005 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据