4.7 Article

Three-dimensional structures of fibrillar Sm proteins:: Hfq and other Sm-like proteins

期刊

JOURNAL OF MOLECULAR BIOLOGY
卷 356, 期 1, 页码 86-96

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmb.2005.11.010

关键词

RNA-binding protein; Sm-like (Lsm) protein; helical fibre; electron microscopy; FTIR

向作者/读者索取更多资源

Hfq is a nucleic acid-binding protein that functions as a global regulator of gene expression by virtue of its interactions with several small, non-coding RNA species. Originally identified as an Escherichia coli host factor required for RNA phage Q beta replication, Hfq is now known to post-transcriptionally regulate bacterial gene expression by modulating both mRNA stability and translational activity. Recently shown to be a member of the diverse Sm protein family, Hfq adopts the OB-like fold typical of other Sm and Sm-like (Lsm) proteins, and also assembles into toroidal homo-oligomers that bind single-stranded RNA. Similarities between the structures, functions, and evolution of Sm/Lsm proteins and Hfq are continually being discovered, and we now report an additional, unexpected biophysical property that is shared by Hfq and other Sm proteins: E. coli Hfq polymerizes into well-ordered fibres whose morphologies closely resemble those found for Sm-like archaeal proteins (SmAPs). However, the hierarchical assembly of these fibres is dissimilar: whereas SmAPs polymerize into polar tubes (and striated bundles of such tubes) by head-to-tail stacking of individual homo-heptamers, helical Hfq fibres are formed by cylindrical slab-like layers that consist of 36 subunits arranged as a hexamer of Hfq homo-hexamers (i.e. protofilaments in a 6X6 arrangement). The different fibrillar ultrastructures formed by Hfq and SmAP are presented and examined herein, with the overall goal of elucidating another similarity amongst the diverse members of the Sm protein family. (c) 2005 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据