4.4 Article

Engineering artificially split inteins for applications in protein chemistry:: Biochemical characterization of the split Ssp DnaB intein and comparison to the split Sce VMA intein

期刊

BIOCHEMISTRY
卷 45, 期 6, 页码 1571-1578

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bi051697+

关键词

-

向作者/读者索取更多资源

In protein trans-splicing, an intein domain split into two polypeptide chains mediates linkage of the flanking, amino acid sequences, the N- and C-terminal exteins, with a native peptide bond. This process can be exploited to assemble proteins from two separately prepared fragments, e.g., for the segmental labeling with isotopes for NMR studies or the incorporation of chemical and biophysical probes. Split inteins can be artificially generated by genetic means; however, the purified intein(N) and intein(C) fragments usually require a denaturation and renaturation treatment to fold into the active intein, thus preventing their application to proteins that cannot be refolded. Here, we report that the purified fragments of the artificially split DnaB helicase of Synechocystis spp. PCC6803 (Ssp DnaB) intein are active under native conditions. The first-order rate constant of the protein trans-splicing reaction was 7.1 X 10(-4) s(-1). The previously described split vacuolar ATPase of Saccharomyces cerevisiae (Sce VMA) intein is the only other artificially split intein that is active under native conditions; however, it requires induced complex formation of the intein fragments by auxiliary dimerization domains for efficient protein trans-splicing. In contrast, fusion of the dimerization domains to the split Ssp DnaB intein fragments had no effect on activity. This difference was also reflected by a higher thermostability of the split Ssp DnaB intein. Further investigations of the split Sce VMA intein under optimized conditions revealed a first-order rate constant of 9.4 x 10(-4) s(-1) for protein trans-splicing and 1.7 x 10(-3) s(-1) for C-terminal cleavage involving a Cys1Ala mutant. Finally, we show that the two split inteins are orthogonal, suggesting further applications for the assembly of proteins from more than two parts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据